Prognostic utility of RECIP 1.0 with manual and AI-based 68 segmentations in biochemically recurrent prostate cancer from [68Ga]Ga-PSMA-11 PET images

Jake Kendrick, Roslyn J. Francis, Ghulam Mubashar Hassan, Pejman Rowshanfarzad, Jeremy Sl Ong, Michael McCarthy, Sweeka Alexander, Martin A. Ebert

Abstract

Purpose: This study aimed to (i) validate the Response Evaluation Criteria in PSMA (RECIP 1.0) criteria in a cohort of biochemically recurrent (BCR) prostate cancer (PCa) patients and (ii) determine if this classification could be performed fully automatically using a trained artificial intelligence (AI) model.

Methods: One hundred ninety-nine patients were imaged with [68Ga]Ga-PSMA-11 PET/CT once at the time of biochemical recurrence and then a second time a median of 6.0 months later to assess disease progression. Standard-of-care treatments were administered to patients in the interim. Whole-body tumour volume was quantified semi-automatically (TTVman) in all patients and using a novel AI method (TTVAI) in a subset (n = 74, the remainder were used in the training process of the model). Patients were classified as having progressive disease (RECIP-PD), or non-progressive disease (non RECIP-PD). Association of RECIP classifications with patient overall survival (OS) was assessed using the Kaplan-Meier method with the log rank test and univariate Cox regression analysis with derivation of hazard ratios (HRs). Concordance of manual and AI response classifications was evaluated using the Cohen's kappa statistic.

Results: Twenty-six patients (26/199 = 13.1%) presented with RECIP-PD according to semi-automated delineations, which was associated with a significantly lower survival probability (log rank p < 0.005) and higher risk of death (HR = 3.78 (1.96-7.28), p < 0.005). Twelve patients (12/74 = 16.2%) presented with RECIP-PD according to AI-based segmentations, which was also associated with a significantly lower survival (log rank p = 0.013) and higher risk of death (HR = 3.75 (1.23-11.47), p = 0.02). Overall, semi-automated and AI-based RECIP classifications were in fair agreement (Cohen's k = 0.31).

Conclusion: RECIP 1.0 was demonstrated to be prognostic in a BCR PCa population and is robust to two different segmentation methods, including a novel AI-based method. RECIP 1.0 can be used to assess disease progression in PCa patients with less advanced disease. This study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615000608561) on 11 June 2015.

Citation

Cite this Paper

Kendrick J, Francis RJ, Hassan GM, et al. Prognostic utility of RECIP 1.0 with manual and AI-based 68 segmentations in biochemically recurrent prostate cancer from [68Ga]Ga-PSMA-11 PET images. European Journal Nuclear Medicine and Molecular Imaging. 2023. DOI: 10.1007/s00259-023-06382-2.

Upload File Icon - Laboratory X Webflow Template

Access paper

To read the entire article and explore in-depth insights, click the button below.

More articles

Explore our collection of 200+ Premium Webflow Templates